# Synthesis of 2,3,4-triphenyl-3-azabicyclo[3.2.0]hepta-1,4-diene and its novel reaction with dimethyl acetylenedicarboxylate 

Kiyoshi M atsumoto, ${ }^{, a}$ Sadahito G oto, ${ }^{\text {a }} \mathrm{N}$ aoto H ayashi, ${ }^{\text {a }}$ Takane U chida ${ }^{\text {b }}$ and Akikazu Kakehi,*,c<br>${ }^{\text {a }}$ Graduate School of H uman and Environmental Studies, K yoto U niversity, K yoto 606-01, J apan<br>${ }^{\text {b }}$ F aculty of E ducation, F ukui U niversity, Fukui 910, J apan<br>${ }^{\text {c }}$ Faculty of Engineering, Shinshu U niversity, N agano 380, J apan

## A 3-azabicyclo[3.2.0]hepta-1,4-diene that is unsubstituted in the cyclobutene moiety has been prepared for the first time and undergoes a novel reaction with dimethyl acetylenedicarboxylate to give azepine 6.

Benzocyclobutene and related compounds, including heteroanalogues, represent a unique compromise between the thermodynamic stability associated with an aromatic system and the kinetic reactivity of a strained cyclobutene. ${ }^{1}$ A lthough 3-thiabicyclo[3.2.0]hepta-1,4-diene and its derivatives are relatively well known, ${ }^{2,3}$ the only example of the corresponding aza-analogue has been reported by G arratt and Neoh who have synthesized 6,7-di-tert-butyl-3-thiabicyclo[3.2.0]hepta-1,4diene and its pyrrole and furan analogues by the base-catalyzed rearrangement of the corresponding 4-heterohepta-1,6-diynes. ${ }^{4}$

We now report the first synthesis of the title compound that has no substituent in the cyclobutene moiety along with its novel reaction with dimethyl acetylenedicarboxylate (DMAD).
The title compound 1 was prepared by 1,3-dipolar cycloaddition of 1,2,3-triphenylaziridine with dimethyl cyclobutene-1,2-dicarboxylate, ${ }^{5}$ followed by hydrolysis ${ }^{6}$ and oxidative decarboxylation with lead tetraacetate ${ }^{7}$ (Scheme 1). The


Scheme 1 Reagents and conditions: i, D M SO- $\mathrm{H}_{2} \mathrm{O}, \mathrm{KOH}, 8{ }^{\circ} \mathrm{C}, 95 \%$; ii, $\mathrm{Pb}(\mathrm{OAC})_{4}$, pyridine, $70^{\circ} \mathrm{C}, 40-55 \%$
method is well documented for the synthesis of benzocyclobutene and related compounds. ${ }^{1}$ However, this method was not, in our hands, amenable to similar adducts ${ }^{5}$ from aziridines such as 1-benzyl-2,3-diphenylaziridine and 1-cyclohexyl-2aroylaziridines.

The $\int_{c-H}$ coupling constant in the cyclobutene moiety was 140 Hz . This value is comparable to those of the parent cyclobutene ( 140 Hz ), ${ }^{8}$ benzocyclobutene $(138 \mathrm{~Hz})^{9}$ and the heteroanalogues ( $137-140 \mathrm{~Hz}$ ). ${ }^{2 c}$ The bicycloheptadiene 1 readily reacted with bromine to produce the ring opened product 2 in quantitative yield, probably via the carbocation 3 stabilized by the nitrogen atom and phenyl group. In contrast, 3-thiabicyclo[3.2.0]hepta-1,4-diene is reported to add to bromine to give the tetrabromide $4^{2 b}$ (Scheme 2). N ext the reaction with DM AD was performed since we hoped that compound 1 would serve either as a diene or as an azomethine ylide as shown in structure 5. Thus, reaction of 1 with 1 equiv. of DMAD in refluxing 1,2-dichlorobenzene for 3 h afforded the 1:1 adduct as orange needles in $54 \%$ yield. A $n$ inspection of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra confirmed the product retained the cyclobutene


Scheme 2
ring which, however, was now unsymmetrically substituted. A preliminary X -ray analysis of this compound established that it had structure 6 which is consistent with the N M R data (Fig. 1). Photochemical ${ }^{10 \mathrm{a}}$ and thermal ${ }^{10 \mathrm{~b}}$ formation of analogous but isomeric diester azepines have been reported from pyrrole and DM AD, and from the 3-azaquadricyclane system, respectively. No thermal formation of an azepine from pyrroles has been reported, ${ }^{11,12}$ although 1-methylindole with DM AD does give an azepine ${ }^{13}$ A possible mechanism for the formation of 6 is shown in Scheme 3. Either an intramolecular 1,3-shift of 7 to the bicyclic aziridine 8 or a 1,2-shift of 7 to the dihydroazete 9 is thermally symmetry-disallowed. ${ }^{14}$
F urther studies on the synthesis and properties of similar 3-azabicyclo[3.2.0]hepta-1,4-dienes are in progress using nonstabilized azomethine ylides. ${ }^{15}$

## Experimental

## Preparation of 2,3,4-triphenyl-3-azabicyclo[3.2.0]hepta-1,4-

 diene 1To a solution of trans-2,3,4-triphenyl-3-azabicyclo[3.2.0]-heptane-1,5-dicarboxylic acid ( 0.12 mmol ) in dry pyridine ( 2 $\mathrm{cm}^{3}$ ) under argon, lead tetraacetate ( 0.25 mmol ) was added portionwise with stirring. The mixture was heated to $70^{\circ} \mathrm{C}$ for 3 h . A fter evaporation of the solvent under vacuum, the residue was chromatographed on alumina eluting with benzene, giving 1 as a white powder in $55 \%$ yield; $\mathrm{mp} 218.0-219.0^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $3.41(\mathrm{~s}, 4 \mathrm{H}), 6.92-7.32(\mathrm{~m}, 15 \mathrm{H}) ; \delta_{\mathrm{c}}(67.8 \mathrm{M} \mathrm{Hz}$, $\mathrm{CDCl}_{3}$ ) 27.50, 125.45, 126.42, 127.41, 127.78, 127.92, 128.92, 129.55, 132.54, 140.22 (Found: C, 89.7; H, 5.9; N , 4.3. C ${ }_{24} \mathrm{H}_{19} \mathrm{~N}$ requires C, 89.7; H , 6.0; N, 4.4\%).

## Reaction of 1 with bromine

To a stirred solution of $\mathbf{1}$ ( 0.1 mmol ) in chloroform ( 2.5 $\mathrm{cm}^{3}$ ) was added dropwise a solution of bromine $\left(0.1 \mathrm{~cm}^{3}\right)$ in


1

7

Scheme 3


Fig. 1 ORTEP D rawing of 6
chloroform ( $1 \mathrm{~cm}^{3}$ ). Evaporation of the solvent gave 3 -(2-bromoethyl)-4-bromo-1,2,5-triphenylpyrrole $\mathbf{2}$ as a white powder in quantitative yield; mp 196.0-197.0 ${ }^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \dagger 3.11\left(\mathrm{t}, \mathrm{J} 7.8,2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.54(\mathrm{t}, \mathrm{J} 7.8,2 \mathrm{H}$, $\mathrm{BrCH}_{2}$ ), $6.84-7.25\left(\mathrm{~m}, 15 \mathrm{H}\right.$, aromatic); $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$ ) $30.01\left(\mathrm{CH}_{2}\right), 31.57\left(\mathrm{CH}_{2}\right), 99.66,118.99,127.04,127.30,127.53$, 127.75, 128.07, 128.41, 128.61, 130.64, 130.89, 131.41, 132.74, 138.20 (Found: $\mathrm{C}, 60.0 ; \mathrm{H}, 4.0 ; \mathrm{N}, 2.9 . \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NBr}_{2}$ requires C , 59.6; H , 4.1; N, 2.8\%)

## Reaction of 1 with D M AD

A solution of $1(0.11 \mathrm{mmol}, 0.034 \mathrm{~g})$ and DM AD ( $1 \mathrm{mmol}, 0.12$

[^0]$\mathrm{cm}^{3}$ ) in 1,2-dichlorobenzene ( $3 \mathrm{~cm}^{3}$ ) was refluxed under argon for 3 h . A fter evaporation of solvent, the residue was chromatographed on silica gel using hexane-ethyl acetate as eluent to give the product which was recrystallized from ethanol giving pure 6 ( $0.027 \mathrm{~g}, 54 \%$ ); mp $258.3-263.0^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 2.97-3.41 (m, 4H), $3.55\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 3.71\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $6.75-7.87(\mathrm{~m}, 15 \mathrm{H}) ; \delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 29.22\left(\mathrm{CH}_{2}\right), 29.47$ $\left(\mathrm{CH}_{2}\right), 52.31\left(\mathrm{OCH}_{3}\right), 52.42\left(\mathrm{OCH}_{3}\right), 112.71,119.01,119.68$, 127.64, 128.05, 128.27, 128.39, 128.63, 128.68, 129.18, 132.29, 134.20, 134.63, 135.98, 142.05, 145.23, 146.51, 151.11, 165.25 ( $\mathrm{C}=0$ ), 167.30 ( $\mathrm{C}=0$ ) (Found: $\mathrm{C}, 69.9 ; \mathrm{H}, 7.2 ; \mathrm{N}, 4.0$. $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N} \mathrm{O}_{4}$ requires C, 70.0; H, 7.3; N, 4.1\%).

## C rystal structure determination for compound 6

U nfortunately, we could not obtain a good quality crystal that allowed us to determine the unit cell precisely.

Data were collected at $\mathrm{T}=21^{\circ} \mathrm{C}$ on a R igaku A FC5S diffractometer; $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N} \mathrm{O}_{4}, \mathrm{M}=463.53$, red needles, dimensions $0.08 \times 0.18 \times 0.66 \mathrm{~mm}$, monoclinic, space group $=\mathrm{P} 2_{1} / \mathrm{a}$, $a=8.82(7), \quad b=36.41(1), \quad c=8.44(3) \AA, \quad \beta=114.5(3)^{\circ}, \quad U=$ 2464(20) $\AA^{3}, Z=4, D_{c}=1.249 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=976 . \mathrm{Mo-K} \alpha$ radiation ( $\lambda=0.71069 \AA$ ) $\mu=0.077 \mathrm{~mm}^{-1}, \omega$ scan mode with $\omega$ scan width $=0.92+0.30 \tan \theta, \omega$ scan speed 32.0 deg $\mathrm{min}^{-1}, 6115$ reflections were collected in the range $6.0<$ $2 \theta<55.0$ and 5767 unique reflections ( $\mathrm{R}_{\text {int }}=0.060$ ) were used in the refinement. Twenty-four reflections were used for unit cell determination. The structure was solved by direct methods ${ }^{16}$ using full-matrix least squares on $F$ for all non-hydrogen atoms using Lorentz polarization and absorption corrections to give $R=0.075$, and $R_{w}=0.079$ for 1789 independent observed reflections with $\mathrm{I}>2.00 \sigma(\mathrm{I})$ and 316 variables for $2 \theta_{\max }=55.0^{\circ}$. The final difference map maxima and minima were 0.28 and -0.29 e $\AA^{-3}$, respectively. The atomic scattering factors for all atoms and the anomalous dispersion correction factors for atoms other than hydrogen were taken from the literature ${ }^{17-19} \mathrm{All}$ calculations were performed using TEXSAN ${ }^{20}$ crystallographic software package of the M olecular Structure Corporation. A tomic coordinates, bond lengths, bond angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/142.

## A cknowledgements

This work was supported in part by a Grant-in-A id for Scientific R esearch ( N 0.08221214 ) from the M inistry of Education, Science, Sports and Culture, Japan.

## $R$ eferences

1 R. P. Thummel, Acc. Chem. Res., 1980, 13, 70; B. Halton, Chem. R ev., 1973, 73, 113
2 (a) P. J. G arratt and K . P. C. Vollhardt, J. A m. C hem. Soc., 1972, 94, 1022; 7087; (b) P. J. G arratt and D. N. N icolaides, J. Org. Chem., 1974, 39, 2222; (c) P. J. G arratt and S. B. N eoh, J. Org. Chem., 1975, 40, 970.
3 B. E. Ayres, S. W. Longworth and J. F. W. M cOmie, Tetrahedron, 1975, 31, 1755; K. P. C. Vollhardt and R. G. Bergman, J. A m. Chem. Soc., 1972, 94, 8950; 1973, 95, 7538; R. G. Bergman and K. P. C. Vollhardt, J. Chem. Soc., Chem. Commun., 1973, 214; H. H auptmann, Tetrahedron Lett., 1974, 3589; M. P. Cava, M. V. Lakshmikantham and M. Behforouz, J. Org. Chem., 1974, 39, 206; P. Vogel and M. H ardy, H elv. C him. A cta, 1974, 57, 196.

4 P. J. G arratt and S. B. Neoh, J. Am. Chem. Soc., 1975, 97, 3255; J. Org. Chem., 1979, 44, 2667.

5 K. M atsumoto, H. Iida, T. U chida, Y. Yabe, A. K akehi and J. W. Lown, Can. J. C hem., 1994, 72, 2108.

6 K . M atsumoto, Y. K ono and T. U chida, J. Org. Chem., 1977, 42, 1103.

7 R . P. Thummel, J. C hem. Soc., C hem. C ommun., 1974, 899.

8 S. Borcic and J. D. Roberts, J. Am. Chem. Soc., 1965, 87, 1056; E. A . H ill and J. D. Roberts, J. A m. Chem. Soc., 1967, 89, 2047.

9 G. Freankel, Y. A sahi, M . J. M itchel and M. P. C ava, Tetrahedron, 1964, 20, 1179; H. Hart, J. A. H artlarger, R. W. Fish and R. R. R afos, J. Org. Chem., 1966, 31, 2244.
10 (a) R. P. G andhi and V. K. Chadha, Indian J. Chem., 1971, 9, 305; (b) H. Prinzbach, R . F uchs and R . K itzing, A ngew. C hem., Int. E d. E ngl., 1968, 7, 67.
11 R. A. Jones and G. P. Bean, The Chemistry of Pyrroles, A cademic, L ondon, 1977, ch. 6.
12 R. M. A cheson, Adv. Heterocycl. Chem., 1965, 1, 125; R. M. A cheson and N. F. Elmore, A dv. H eterocycl. Chem., 1978, 23, 263.
13 R . M. A cheson, J. Bridson and T. S. Cameron, J. Chem. Soc., Perkin Trans. 1, 1972, 968.
14 R. B. Woodward and R. H offmann, The Conservation of Orbital Symmetry, A cademic, N ew York, 1969.

15 O. Tsuge and S. K anemasa, A dv. H eterocycl. C hem., 1989, 45, 231.
16 M ITH RIL: C. J. Gilmore, J. A ppl. Cryst., 1984, 17, 42; DIRDIF : P. T. Beurskens, Technical Report 1984/1, Crystallography L aboratory, Toernooiveld, 6525 Ed N ijmegen, N etherlands.
17 D. T. Cromer and J. T. Weber, International Tables for X-ray Crystallography, vol. IV, The Kynoch Press, Birmingham, UK, 1974, Table 2.2A
18 J. A . Ibers and W. C. H amilton, A cta C rystallogr., 1964, 17, 781.
19 D. T. Cromer, International Tables for X -ray Crystallography, vol. IV, The K ynoch Press, Birmingham, U K, 1974, Table 2.3.1.
20 TEXRAY Structure A nalysis Package, M olecular Structure Corporation, 1985.

Paper 7/04090C
R eceived 11th J une 1997
A ccepted 17th J uly 1997


[^0]:    $\dagger$ 」 values are given in Hz .

